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UNIFCRI"3 FIELD FROM DISTRIBUTION OF CURRENTS ON AN ELLIPSE 

S. C. Snowdon 

March 27, 1968 

Purpose 

To determine the distribution of currents on the SUrfaCe 

of an ellipse that will produce a uniform field within the ellipse. 

Extention to a gradient field is also given. 

Reference 

1. W. R. Smythe, Static and Dynamic Electricity, McGraw- 

Hill Book Co., Inc., New York (l-950). 

Coordinate System 

Conformal transformations1 suggest that the variables (u,v) 

are useful when dealing with problems having an elliptical boundary. 

x = a sin u Ch v y = a cos u Sh v (1) 

The factor for displacement is 

hx =h : 
Y 

h = aKo= (2) 

Potentials (Uniform Field) 

Since one desires a uniform inside the ellipse one chooses 

m = 
i 

-Bpy = -BCa cos u Sh v (3) 

The transformation of Eq. (l), being conformal gives for the Lap- 

lace equation 

a2, + a**- _ 0. y- - 
au” av2 

(4) 

A solution appropriate to the external region is 

$0 = A a cos u emv (5) 
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Boundary Conditions 

Thi normal component of the flux density is continuous. 

This gives 

where from Eq. (1) v = v0 is seen to generate an ellipse. Thus 

VO 
A = Bee Ch vO. 

Applying the Ampere cj.rcuital law to a small region 

spanning v = v. and assuming a surface current of density 0 exists 

on the surface gives 

C H uo - Hui > v = vo h li u = 4 II 0 h LI u. (emu) 

or 

aa 200 
4&-hau 

i ) v = vo 

or 
Bo (I = T . eVo - Sin u 

(emu) 
Sh2vo t cos% 

Potentials (Gradient Field) 

One desires to have inside the ellipse 

a*B', 
a i = -Blox y = - sin 2 u Sh 2 v 4 

Outside the ellipse there are no sources. Hence 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) $0 = l/4 a* A si.n 2 u e-*v 
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Matching the normal fields on the elliptical boundary gives 

A = Bloc 2VO Ch 2 vO. (13) 

The surface current density is then determined from the 

discontinuity in the tangential component of the field. 

aB' *v0 cos 2 u 
,J=------ O--e (emu) 

8~ Sh2vo t COS*U 
(14) 


